The promise and perils of synthetic biology

The promise(ˈpräməs) and perils(ˈperəl) of synthetic(sinˈTHetik) biology(bīˈäləjē)

To understand them well, look to the past

By The Economist(əˈkänəməst)

For the past four billion years or so the only way for life on Earth to produce a sequence(ˈsēkwəns) of dna—a gene(jēn)—was by copying a sequence it already had to hand. Sometimes the gene would be damaged(ˈdamij) or scrambled(ˈskrambəl), the copying imperfect(imˈpərfəkt) or undertaken repeatedly(rəˈpēdədlē). From that raw material(məˈti(ə)rēəl) arose(əˈrōz) the glories(ˈglôrē) of natural selection. But beneath(bəˈnēTH) it all, gene begat(bəˈɡat) gene.

That is no longer true. Now genes can be written from scratch(skraCH) and edited(ˈedət) repeatedly, like text in a word processor. The ability to engineer(ˌenjəˈnir) living things which this provides represents(ˌreprəˈzent) a fundamental change in the way humans interact with the planet’s life. It permits the manufacture(ˌmanyəˈfakCHər) of all manner of things which used to be hard, even impossible, to make: pharmaceuticals(ˌfärməˈso͞odək(ə)l), fuels(ˈfyo͞oəl), fabrics(ˈfabrik), foods and fragrances(ˈfrāgrəns) can all be built molecule(ˈmäləˌkyo͞ol) by molecule. What cells do and what they can become is engineerable, too. Immune(iˈmyo͞on) cells can be told to follow doctors’ orders; stem(stem) cells better coaxed(kōks,kōˈaks,ˈkō-aks) to turn into new tissues(ˈtiSHo͞o); fertilised(ˈfərdlˌīz) eggs programmed to grow into creatures quite unlike their parents.

The earliest stages(stāj) of such “synthetic biology” are already changing many industrial(inˈdəstrēəl) processes, transforming medicine(ˈmedəsən) and beginning to reach into the consumer world (see Technology Quarterly(ˈkwôrdərlē)). Progress may be slow, but with the help of new tools and a big dollop(ˈdäləp) of machine learning, biological(ˌbīəˈläjək(ə)l) manufacturing(ˌmanyəˈfakCHər) could eventually(əˈven(t)SH(o͞o)əlē) yield(yēld) truly cornucopian(ˌkôrn(y)əˈkōpēə) technologies. Buildings may be grown from synthetic wood or coral(ˈkôrəl, ˈkärəl). Mammoths(ˈmaməTH) produced from engineered elephant(ˈeləfənt) cells may yet stride(strīd) across Siberia(sīˈbi(ə)rēə).

The scale(skāl) of the potential(pəˈten(t)SHəl) changes seems hard to imagine. But look back through history, and humanity’s((h)yo͞oˈmanədē) relations with the living world have seen three great transformations: the exploitation(ˌekˌsploiˈtāSH(ə)n) of fossil(ˈfäsəl) fuels(ˈfyo͞oəl), the globalisation(ˌɡlōbələˈzāSHən, ˌɡlōbəˌlīˈzāSHən) of the world’s ecosystems(ˈēkōˌsistəm) after the European(ˌyo͝orəˈpēən) conquest(ˈkänˌkwest) of the Americas, and the domestication(dəˌmestəˈkāSH(ə)n) of crops(kräp) and animals at the dawn of agriculture(ˈaɡrəˌkəlCHər). All brought prosperity(präˈsperədē) and progress, but with damaging side-effects. Synthetic biology promises similar transformation. To harness(ˈhärnəs) the promise and minimise(ˈminəˌmīz) the peril(ˈperəl), it pays to learn the lessons of the past.


https://www.economist.com/leaders/2019/04/04/the-promise-and-perils-of-synthetic-biology